
Features

- → 1750 1870MHz
- → 15 dB Gain at 1750MHz
- → +29.0 dBm Output IP3
- **◆ 0.8 dB Noise Figure**
- No matching circuit needed
- → Low power consumption (3V/35mA)
- Surface mount type

Applications

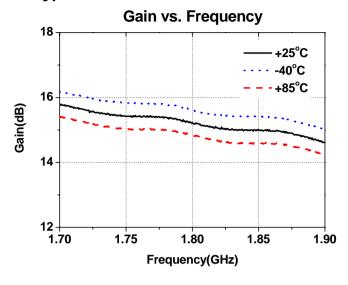
- LNA for PCS
- Repeater
- **→** Base Station
- Mobile Infrastructure

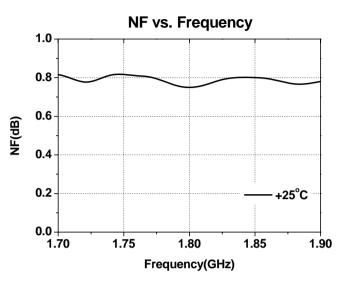
Functional Diagram

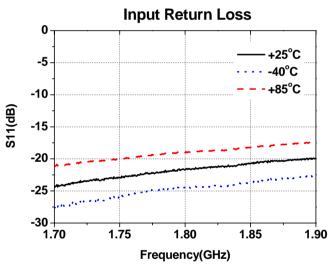
Function	Pin No.		
RF IN	2		
RF OUT	5		
Vcc	6		
Ground	1,3,4		

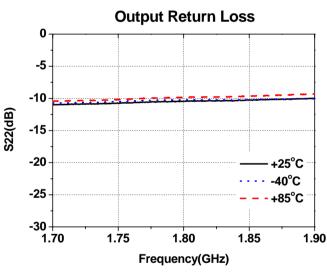
Description

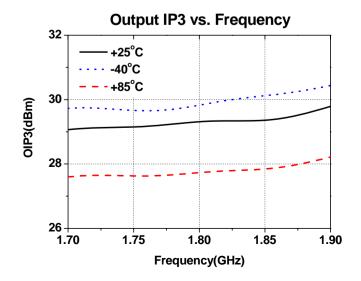
The PLF18A is a high performance GaAs p-HEMT LNA (Low Noise Amplifier). The amplifier features high linear performance, low noise figure, low power consumption and high reliability. The PLF18A operates from a single voltage supply and no matching circuit needed. The device is a superior performance p-HEMT amplifier that offers high dynamic range in a low cost miniature surface mount type with metal cover. These PLF series provide the most suitable solutions for LNA in communication systems.

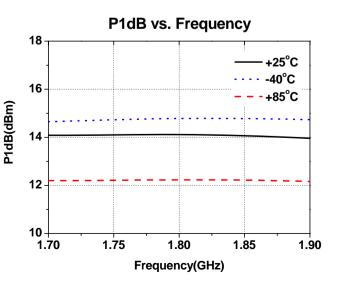

Specifications

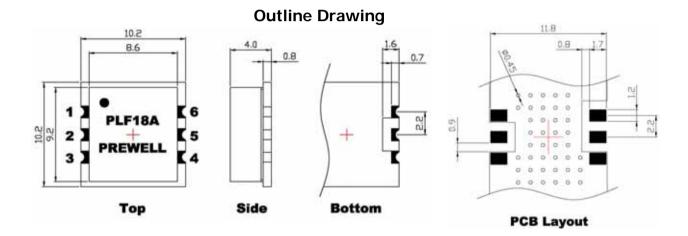

Symbol	Parameters	Units	Freq.	Min.	Тур.	Max.
S21	Gain	dB	1750 MHz		15.3	
			1870 MHz		14.6	
S11	Input Return Loss	dB	1750 MHz		-18	
			1870 MHz		-18	
S22	Output Return Loss	dB	1750 MHz		-10	
			1870 MHz		-10	
	Output Power @1dB	dBm	1750 MHz		14	
P1dB	compression		1870 MHz		14	
OIP3	Output Third Order dBr		1750 MHz		29.0	
		dBm	1870 MHz		29.0	
NF	Noise Figure d		1750 MHz		0.8	
		dB	1870 MHz		0.8	
V/I	Supply voltage / current	V/mA			3.0/35	


Test Conditions: T=25°C, Supply Voltage=+3.0V, 50ohm System, OIP3 measured with two tones at an output power of +0dBm/tone separated by 1MHz.

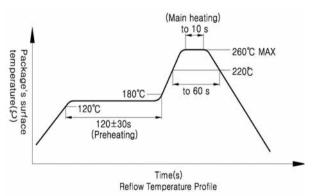



Typical RF Performance

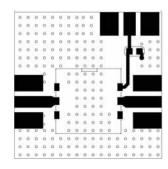



http://www.prewell.com

Absolute Maximum Ratings


Parameter	Rating	Unit
Supply Voltage	+6	V
Supply Current	60	mA
RF Power Input	10	dBm
Storage Temperature	-55 to +125	°C
Ambient Operating Temperature	-40 to +85	°C

Operation of this device above any of these parameters may cause permanent damage.



Soldering Time Profile

- 1. Maximum temperature: +260°C or below.
- 2. Time at maximum temperature: 10s or less
- 3. Time of temperature higher than +220°C: 60s or less
- 4. Preheating time at +120°C to +180°C: 120 ±30s
- 5. Maximum number of reflow process: 3times
- 6. Maximum chlorine content of rosin flux (percentage mass): 0.2% or less

Evaluation Board Layout (2.3x2.3)

Mounting Instructions

- 1. Use a large ground pad area with many plated through-holes as shown.
- 2. We recommend 1 oz copper minimum.
- 3. Measurement for our data sheet was made on 0.8mm thick FR-4 Board.
- 4. Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
- RF trace width depends on the board material and construction.

http://www.prewell.com