
PLN25 GaAs p-HEMT LNA

Features

- 🔶 2300 2700MHz
- → 12.0 dB Gain at 2300MHz
- + +30.0 dBm Output IP3
- ✤ 0.75 dB Noise Figure at 2300MHz
- ✤ 5.5x5.5 size / No matching circuit needed
- Low power consumption (3V/45mA)
- Surface mount type

Applications

- LNA for PCS
- Repeater
- Base Station
- Mobile Infrastructure

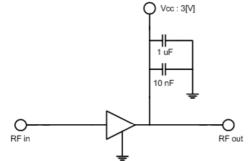
AS
/ ~ ~ ~ <i>Mar</i> ~ ~
C 912905
C 91302
$\lambda \setminus V // \Lambda$

Functional Diagram

Function	Pin No.		
RF IN	1		
RF OUT	3		
Vcc	4		
Ground	2		

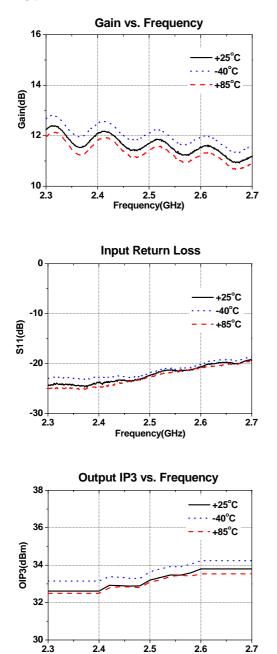
Description

The PLN25 is a high performance GaAs p-HEMT LNA (Low Noise Amplifier). The amplifier features high linear performance, low noise figure, low power consumption and high reliability. The PLN25 operates from a single voltage supply and no matching circuit needed. The device is a superior performance p-HEMT amplifier that offers high dynamic range in a low cost miniature surface mount type with metal cover. These PLN series provide the most suitable solutions for LNA in communication systems.


Specifications

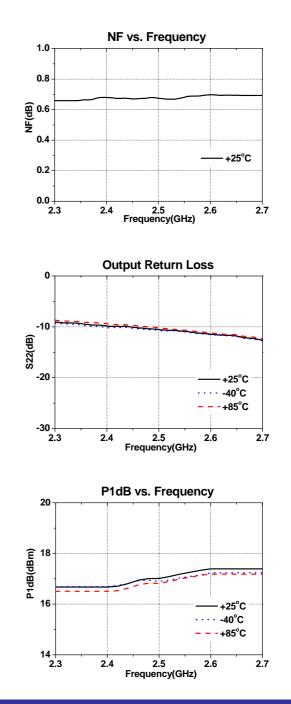
Symbol	Parameters	Units	Freq.	Min.	Тур.	Max.
S21	Gain	dB	2300 MHz		12.0	
			2700 MHz		11.0	
S11	Input Poturn Loss	dB	2300 MHz		-18	
511	Input Return Loss dB	2700 MHz		-15		
S22	Output Return Loss	dB	2300 MHz		-9	
522	Output Return Loss		2700 MHz		-10	
P1dB	Output Power @1dB	dBm	2300 MHz		15	
	compression	abiii	2700 MHz		15	
OIP3	Output Third Order	dBm	2300 MHz		30.0	
	intercept		2700 MHz		31.0	
NF	Noise Figure c	dB	2300 MHz		0.65	
		UB	2700 MHz		0.65	
V/I	Device Voltage / Current	V/mA			3.0/45	

Test Conditions : T=25°C, Supply Voltage=+3.0V, 50ohm System, OIP3 measured with two tones at an output power of 0dBm/tone separated by 1MHz.



Application Circuit

- Bypass Capacitors(10nF & 1uF) should be added 1. for bypassing the AC noise 2. No matching circuit needed

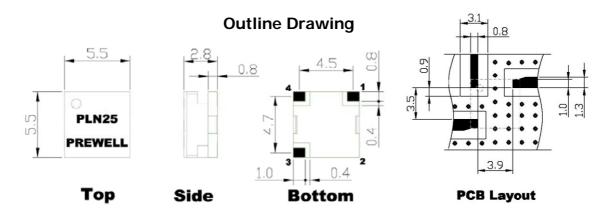

Typical RF Performance

2.4

2.5

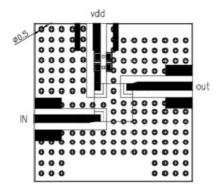
Frequency(GHz)

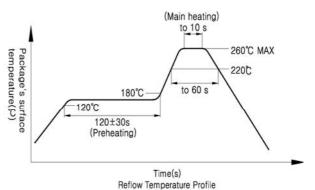
2.7


2.6

Absolute Maximum Ratings

Parameter	Rating	Unit
Device Voltage	6	v
Device Current	80	mA
RF Power Input	10	dBm
Storage Temperature	-55 to +125	°C
Ambient Operating Temperature	-40 to +85	°C


Operation of this device above any of these parameters may cause permanent damage.



Soldering Time Profile

- 1. Maximum temperature: +260°C or below.
- 2. Time at maximum temperature: 10s or less
- 3. Time of temperature higher than +220°C : 60s or less
- 4. Preheating time at +120°C to +180°C: 120±30s
- 5. Maximum number of reflow process : 3times
- 6. Maximum chlorine content of rosin flux (percentage mass) : 0.2% or less

Evaluation Board Layout (2.3x2.3)

Mounting Instructions

- 1. Use a large ground pad area with many plated through-holes as shown.
- 2. We recommend 1 oz copper minimum.
- 3. Measurement for our datasheet was made on 0.8mm thick FR-4 Board.
- 4. Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
- 5. RF trace width depends on the board material and construction.
- 6. All area of GND PAD should be connected to GND